On the intermediate logic of open subsets of metric spaces
نویسنده
چکیده
In this paper we study the intermediate logic MLO(X ) of open subsets of a metric space X . This logic is closely related to Medvedev’s logic of finite problemsML. We prove several facts about this logic: its inclusion in ML, impossibility of its finite axiomatization and indistinguishability from ML within some large class of propositional formulas.
منابع مشابه
On the Structure of Metric-like Spaces
The main purpose of this paper is to introduce several concepts of the metric-like spaces. For instance, we define concepts such as equal-like points, cluster points and completely separate points. Furthermore, this paper is an attempt to present compatibility definitions for the distance between a point and a subset of a metric-like space and also for the distance between two subsets of a metr...
متن کاملThe Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کاملSome Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces
In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...
متن کاملOn quasi $P$-spaces and their applications in submaximal and nodec spaces
A topological space is called submaximal if each of its dense subsets is open and is called nodec if each of its nowhere dense ea subsets is closed. Here, we study a variety of spaces some of which have already been studied in $C(X)$. Among them are, most importantly, quasi $P$-spaces and pointwise quasi $P$-spaces. We obtain some new useful topological characterizations of quasi $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008